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CALCULATION OF A LAMINAR BOUNDARY LAYER 

ON A ROTATING POROUS DISK 

V. D. Borisevich and E. P. Potanin UDC 532.526.75 

Averaging of noninertial terms over the boundary-layer section in the equations 
of motion is used to study the effect of suction and injection on the hydrody- 
namic flow near a rotating disk. 

Control of a boundary layer hy suction or injection of one or the other liquid through 
a porous disk is a technique which is widely used in technology at present [I, 2]. 

Solution of the laminar boundary-layer equations with consideration of the effect of 
flow through the porous surface of the body over which the flow takes place is a complex prob- 
lem which in most cases is solved numerically [3]. However, in a number of technical appli- 
cations there is a need for analytical expressions for the hydrodynamic flow profiles and 
boundary-layer thicknesses [4, 5]. In a number of problems the Slezkin--Targa method has been 
used for this purpose. This method consists of averaging the nonlinear terms in the equa- 
tions of motion over the boundary-layer thickness [6, 7]. 

In the present study a modification of this method will be used to calculate the laminar 
boundary layer in a viscous incompressible liquid on a rotating porous disk of infinite radi- 
us in the presence of uniform suction or injection of a liquid with the same physical proper- 
ties as the main liquid. 

In the notation generally used the equations of the spatial boundary layer on a rotating 
disk have the form [6]: 

0=U U d---U---u + w - - 'gu  v -~ 1 _ _ ~  + ,v - - ,  (1)  
8r Oz r f9 Or Oz ~, 
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u av~+w av__v_+ u v  - ~ - -  

Or Oz r 

O~V 

Oz ~ 
(2) 

--a,. ,  + u + aw - o .  
Or r Oz (3) 

System (1)-(3) must be integrated with boundary conditions 

z = O  U = O ,  V = o r ,  W = - - k ;  

z - + ~  U-+O, V--~O. 
(4) 

A positive k value corresponds to suction in the boundary layer, and a negative to injection. 

Assuming in Eqs. (i) and (2) that 

W (r, z)  = - - k  + Wo (r, z) ( 5 )  

and separating the inertial terms into linear and nonlinear components [8], we obtain: 

o u  ou  v "2 1 o p o2 u ou  
u + w o - -  - ~ v + k - - ,  ( 6 )  

Or Oz r p Or Oz" Oz 

U OV + W o  a v  , +  UV O~V ov  - - v - -  + k - - ,  ( 7 )  
Or ~ z  r Oz ~ az 

OWo aw . +  U_~ + _ _  _. O. (8) 
Or r Oz 

Taking U = rF(z), V = rG(z), considering the condition 
1 0 P  

= 0  
9 Or 

and replacing the iner- 

tial terms by their mean value over the boundary-layer section, we have: 

where h = v/k. 

Integrating Eqs. (9), 

we find 

G = 

exp 

l i 1 i d2F l dF ( 9 )  3F2dz - -  _ _  O~dz = - -  + - -  - - ,  
v6 o v6 ~i dz 2 h dz 

8 d2G 1 dG 
1----- [ 4FGdz = -6 , (I0) 

~6 5 dz 2 h dz 

(i0) and using the approximate boundary conditions: 

z = O  F = - O ,  G . - ( o ;  

dG.  
z = 6  F = O ,  G = O ,  

dz 
- -  = O, 

F = _ 

(0 

h 

A hlexp(-- 11 
+ Azh, 

exp ~ - - 1  

z 6 Z 
--I 

h I . 

(li) 

(12) 

< 

(13) 

1499 



a 

r . . . . . . . . . . . .  i . . . . . . . . . . .  t ,~-,..4 

"4 -2 0 2 & k~ 

Fig. I Fig. 2 

Fig. I. Boundary-layer thickness ~o (a) and parameter Ao (b) vs suction (injec- 
tion) intensity ko. All quantities dimensionless. 

Fig. 2. Coefficient of friction momentum c M (dimensionless) vs suction (injec- 
tion) intensity ko. Dashes, data of [9]. 

To determine the unknowns A and 6 the following system of algebraic equations must be 
solved: 

exp (--2x) 
3 0 + 6 R + @ )  [ 1 - - e x p ( - - x ) - - x e x p ( - - x ) P  

{ @ x  x~ - -2exp(x)}  • [exp(2x) -- t] + 1 + x + ~ 

1 
Ao = "48~D ' 

X 
(14) 

(15) 

whe re 

! 
1 + [--3 -- exp (--2x) + 4 exp (--x)] 

0.= 

R = 

1 -- 2 exp (--x) + exp (--2x) 

X ~ 1 - -  (x + 1) exp (--x) - -  - -  
2 

1 -- exp (--x) 

1 + X 1 [exp(x)+exp(- -x) ]  
D= x 2 2x 1 

' [ I - -  exp (x)] 
x 3 [ 1 - -  exp (--x)] x 5 

1 2 I 
x ~ x 3 6x~ 

x=koSo,  f i o _ - _ 8 ~ )  , ko----k(vo)-U2, A o = A ~  . 

In the limiting case of an impermeable disk (ko = O) the solution coincides with the data 
of [B]. The dependences of the dimensionless boundary-layer thickness 8o and the quantity Ao, 
which characterizes the velocity of radial motion of the medium near the disk surface, on the 
parameter ko are shown in Fig. i. It is evident that suction and especially injection have 
a significant effect on boundary-layer thickness. The dependence of Ao on ko is caused by 
the characteristic change in the values of the corresponding terms in Eqs. (i), (2), describ- 
ing the balance of viscous and "inertial" forces. It is obvious that centrifugal forces tend 
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TABLE i. Comparison of Friction Momentum Coefficients 
for Various Suction Intensities 

Friction h. 
momentum 
coefficient., o o, 5 r, 0 2,0 a, 0 4,0 

C M 

C M 

0 ,572  
0,616 

O, 845 t ,  197 
I ,175 

2,064 
2,041 

3,024 
3,012 

4,011 
4,005 

to remove liquid in the boundary layer to the periphery, while viscous forces inhibit this 
process. In the case of suction the main cause for the decrease in Ao with increase in ko is 
the increase in radial viscous friction forces near the disk surface. Injection leads to 
thickening of the boundary layer, which creates a tendency toward increase in the intensity 
of the radial flow. However, there is then an increase in the "inertial" force caused by 
change in radial velocity with radial coordinate, which is directed opposite to the centrifu- 
gal force. The latter is the cause of the characteristic behavior of Ao. 

Using Eq. (13) for the azimuthal velocity component, we calculate the moments of the 
friction forces Mo acting on one side of the surface of a disk of radius Ro~ 

~~ l~z L "stPR~(v~ t] M o =  2 ~ p v l  r2 OV dr= 
b =o 26o [ 1 - - x  -it t) exp (--,x)] 

(16) 

The dependence of the coefficient of friction momentum 

2Mo (17) 
c~ = ~pt?4 (,~3) v 

on the parameter ko is shown in Fig. 2. The dashed curve is the result of a calculation per- 
formed in [9]. Table 1 presents a comparison of c M values found by different methods. There- 
in CM* is the coefficient determined in [6] by merging of an approximate solution for low suc- 
tions with an exact solution for high suction. 

We note the satisfactory agreement of the values obtained by the different methods, and 
stress the simplicity and convenience of the approach used in the present study for analysis 
of the boundary-layer equations. The analytical expressions found for the hydrodynamic flow 
characteristics are valid for values of the parameter ko at which the boundary laver is sta- 
ble and effects involving its retraction from the disk surface do not develop. 

NOTATION 

U, V, W, radial, circular, and axial velocities; r, z, radial and axial coordinates; P, 
pressure; p, density; v, kinematic viscosity of medium; k, suction (injection) parameter; 6, 
boundary-layer thickness; A, parameter characterizing radial velocity of the medium motion; 
Mo, moment of friction forces; CM, friction momentum coefficient; Ro, disk radius; ~, angular 
velocity of disk rotation. 
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4. 
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STRUCTURE OF THE SINGULAR TERMS IN THE FREE ENERGY 

CORRECTLY REPRODUCING THE NONASYMPTOTIC CORRECTIONS 

TO THE THERMODYNAMIC FUNCTIONS 

V. A. Rykov UDC 536.71 

The method for selecting the structure of the singular terms in the expression 
for the free energy correctly reproducing the nonasymptotic components of the 
thermodynamic functions is examined. 

The problem of describing a wide neighborhood of the critical point with the help of uni- 
fied nonanalytical equations of state is solved in [1-13]. In these works, the starting ther- 
modynamic functions -- the internal energy u(p, T) [1-6], the enthalpy i(p, T) [7, 8], the 
chemical potential ~(p, T) [9], the isochoric heat capacity Cv(P, T) [i0], and the Helmholtz 
free energy F(p, T) [11-13] -- are represented in the form of two terms: an irregular term 
satisfying a power law of the scaling theory (ST) and a regular function describing the char- 
acteristic features of the thermodynamic surface in the region of low densities and pressures. 

The singular components of the equations of state [1-13] enable describing qualitatively 
correctly, i.e., in accordance with the requirements of the ST, the behavior of the thermody- 
namic surface only in an asymptotic neighborhood of the critical point: l ap in<0 ,06 ,  T~.~0,01. 
At the same time, according to [14, 15], in describing the properties of pure substances (in 
our case liquid--vapor systems) auxiliary nonanalytical terms, taking into account the next ap- 
proximations of ST, must be included in the structure of the equations of state. These cor- 
rection terms are calculated in [16] by the e expansion method up to terms of order e2. In 
accordance with the results of [16, 17], the behavior of a number of thermodynamic functions 
on characteristic lines of the thermodynamic surface is described in the critical region by 
the following power laws: 

KT (Pe T) = q~o~ -~ + qb1~--~+A, 

C~ (Pc' T) : fo'~ -~  + f ~  -~+*x + f2, 
A ~-~+ -- 

P(9, Te]--P(Pe, r e ) =  P~@l@l ~-~ + PxAo IApl ~, 
A 

~t (p, T e ] - -  ~x (lee, Te) = RoAp I@18-* + R,@ I@ 18-*+ ~ 

(i) 

(2) 

(3) 

(4) 

Here Go, Fo, Po, Ro are the constant coefficients in front of the asymptotic terms of the ex- 
pressions (1)-(4), ~i, PI, Px, RI are the constant coefficients in front of the nonasymptotic 
correction terms in the expressions (1)-(4). 

The structure of the nonasymptotic terms has now been established only for the scale 
equations of state in parametric form: 
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